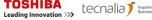


GESTIÓN INTELIGENTE DE LA DISTRIBUCIÓN PARA OPTIMIZACIÓN REGIONAL DE LA DEMANDA Y DEL SUMINISTRO

- Javier Rodríguez Roncero, Landis+Gyr

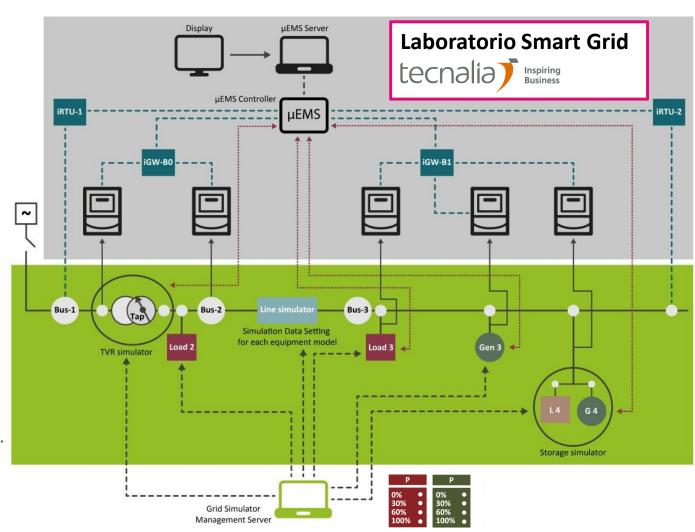


INTRODUCCIÓN

- Landis+Gyr en colaboración con TECNALIA ha probado su nueva solución Smart Grid en condiciones reales de operación.
- El principal objetivo de este estudio es comprobar si soluciones existentes e innovadoras para la gestión automatizada de la red, como es el caso del μEMS de TOSHIBA / Landis+Gyr, pueden ayudar a las utilities a asegurar y mejorar en sus redes la calidad de la tensión, la generación distribuida y el balanceo de la demanda/suministro de energía en las condiciones más adversas.
- Las pruebas se realizaron en el Laboratorio de Smart Grids de TECNALIA utilizando elementos controlables como reguladores de tensión, distintas combinaciones de consumo y generación y sistemas de almacenamiento de energía.

ELEMENTOS CONTROLABLES EN UNA µRED

- Generación renovable solar fotovoltaica y eólica (RES)
- Equipamiento para la regulación de tensión: transformadores con regulación de tensión (OLTC) y reguladores de tensión de tiristor (TVR)
- Cargas interrumpibles.
- Almacenamiento energético mediante baterías (BES)


CONFIGURACIÓN DEL µEMS Y LA µRED

Landis+Gyr (μEMS):

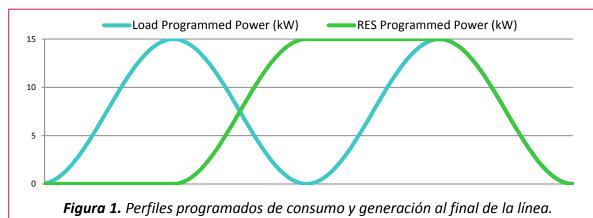
- Servidor μEMS.
- Controlador μEMS.
- S650 Smart Grid Terminal.
- RTU.

• Tecnalia (μRED):

- Simulador TVR/OLTC.
- Simulador de Línea.
- Carga controlable (Load3)
- Generador control. (Gen3)
- Simulador Almacenamiento.

VALIDACIÓN DE LOS RESULTADOS

- El objetivo del proyecto es demostrar las capacidades de la solución **TOSHIBA/Landis+Gyr** y mostrar cómo puede utilizarse para remover las barreras técnicas asociadas a la conexión de recursos energéticos distribuidos (DER) en las redes de MT y BT.
- Para ello, se probaron diferentes escenarios utilizando la configuración del laboratorio descrita anteriormente.
- Dichos escenarios son representativos de los retos reales asociados a la operación de una línea con generación renovable y cargas variables. De cara a probar la solución, se recrearon escenarios extremos en los que tanto el voltaje como la intensidad en la línea exceden los límites establecidos.



ESCENARIO 1: CONTROL DE LA TENSIÓN

Cuatro situaciones diferentes:

- Una primera parte en la que no hay generación y se produce un incremento gradual de la carga. El voltaje en el final de línea cae por debajo de los límites admisibles.
- Una segunda parte donde la generación comienza a incrementarse gradualmente y la carga disminuye. El voltaje en el final de la línea comienza a elevarse gradualmente.
- Una tercera parte en la que la generación alcanza un máximo y la carga comienza a incrementarse de nuevo. La tensión en el final de la línea comienza gradualmente a descender.
- Una parte final donde la carga y la generación se igualan. No hay flujo de energía a lo largo de la línea y por lo tanto el voltaje no varía a lo largo de la línea.
- Sin aplicar control, la tensión excede los límites admisibles.

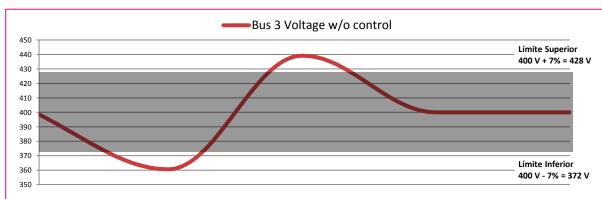
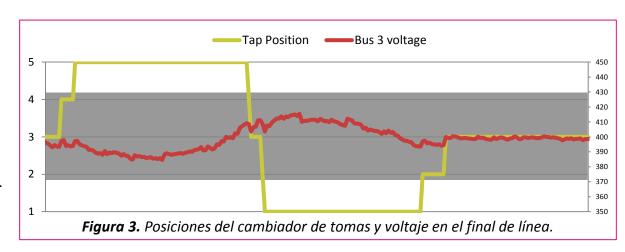
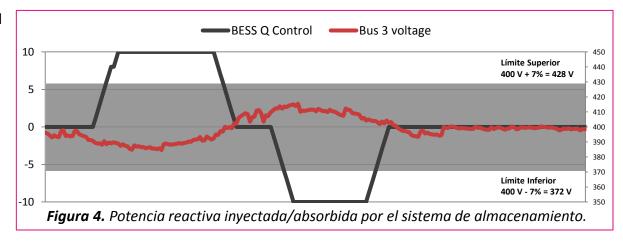


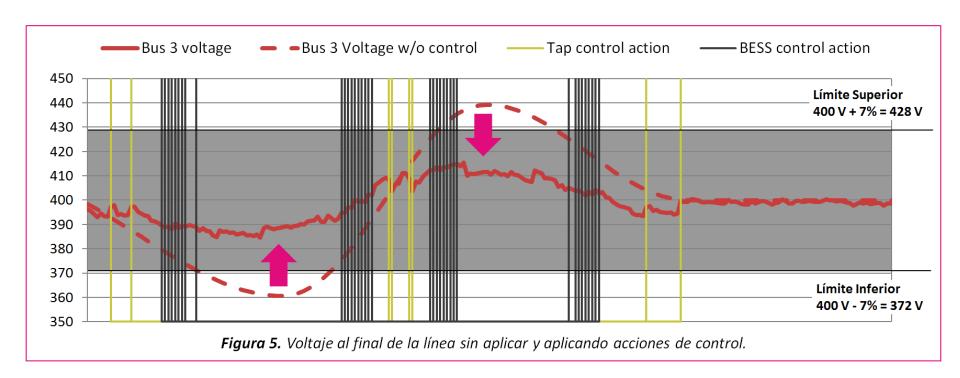
Figura 2. Voltaje al final de la línea sin realizar ningún control.





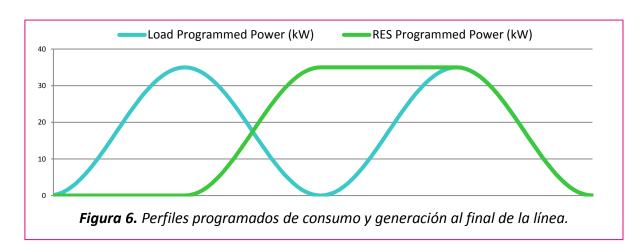
ESCENARIO 1: CONTROL DE LA TENSIÓN

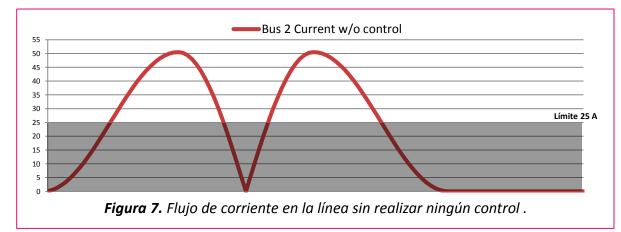
- El μEMS de TOSHIBA actúa sobre los siguientes dispositivos controlables:
 - Regulador de tensión (TVR/OLTC). Admite 5 niveles de regulación del 1,5% en cada paso.
 - Sistema de almacenamiento (BESS). Ajusta linealmente su salida y permite inyectar/absorber energía reactiva.
 - El controlador prioriza el control del TVR sobre el control de las baterías. La capacidad de absorber o invectar reactiva sólo se implementa cuando el TVR ha alcanzado el nivel de regulación máximo o mínimo.
- Aplicando control, la tensión se mantiene dentro de los límites admisibles.



ESCENARIO 1: CONTROL DE LA TENSIÓN

Aplicando las acciones de control anteriormente descritas, el µEMS de TOSHIBA permite mantener la tensión al final de la línea (Bus 3) dentro de los límites establecidos.

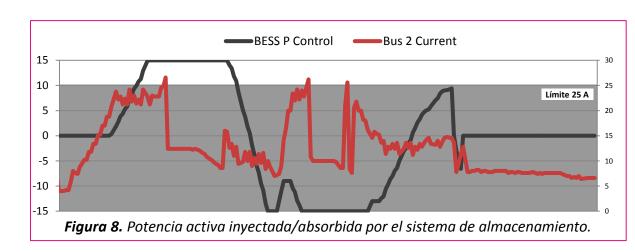


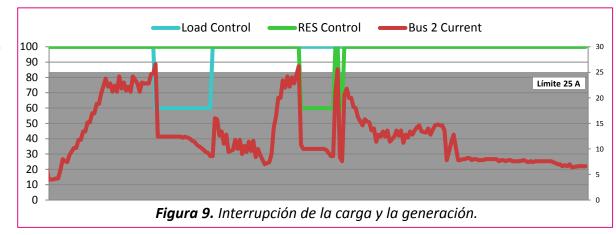


ESCENARIO 2: SOBRECARGA EN LA LÍNEA

Cuatro situaciones diferentes:

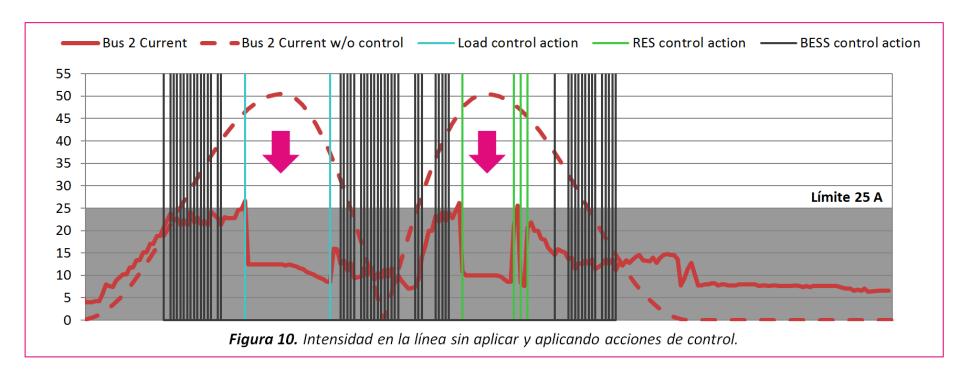
- Una primera parte en la que no hay generación y hay un incremento gradual de la carga. La corriente del Bus 2 al Bus 3 se incrementa y se excede la capacidad máxima de la línea.
- Una segunda parte en la que el generador comienza a incrementar la potencia y la carga disminuye. El flujo de corriente del Bus 2 al Bus 3 disminuye, llega a cero y cambia de sentido.
- Una tercera parte donde la generación alcanza un máximo y la carga llega a cero. La corriente inversa que fluye del Bus 3 al Bus 2 excede nuevamente la capacidad de la línea.
- Una parte final donde la carga y la generación se igualan. No hay flujo de carga en la línea.
- Sin aplicar control, la intensidad excede el límite establecido de 25 A.





ESCENARIO 2: SOBRECARGA EN LA LÍNEA

- El μEMS de TOSHIBA actúa sobre los siguientes dispositivos controlables:
 - Carga interrumpible (Load 3).
 - Generación interrumpible (Gen 3).
 - Sistema de almacenamiento (BESS). Ajusta linealmente su salida y permite invectar/absorber energía activa.
 - El μEMS prioriza en primer lugar el control del BESS. A continuación la interrupción de la generación y por último la interrupción de las cargas (consumos).
- Aplicando control, la intensidad se mantiene dentro de los límites admisibles.



ESCENARIO 2: SOBRECARGA EN LA LÍNEA

Aplicando las acciones de control anteriormente descritas, el µEMS de TOSHIBA permite mantener la corriente resultante en la línea en el nivel requerido de 25 A.

CONCLUSIONES

- Las pruebas realizadas muestran cómo el equipamiento y la tecnología que ofrecen proveedores de soluciones Smart Grid como Landis+Gyr, una empresa del Grupo TOSHIBA, ofrecen un rendimiento suficiente para ser desplegadas en campo.
- Se ha podido constatar cómo esta solución puede resolver satisfactoriamente las restricciones en la red en áreas con generación distribuida instalada. Con ésta solución fue posible controlar y mantener el voltaje dentro de los límites previstos y prevenir el "flickering" (debido a las subtensiones) y las pérdidas (debidas a las sobretensiones). Teniendo la posibilidad de gestionar el estado de carga (SOC) del BESS conectado a la red así como interrumpir cargas y/o generación renovable ésta solución puede gestionar de forma rápida y eficiente la capacidad de la línea.
- El controlador µEMS de TOSHIBA aplica inteligencia distribuida y no depende únicamente en las comunicaciones en tiempo real con el sistema SCADA centralizado. La comunicación entre el sistema de control µEMS y los dispositivos en campo es local y se limita al área del alimentador reduciendo el coste de operación e incrementando la fiabilidad y robustez la solución.

MUCHAS GRACIAS

Javier Rodríguez Roncero
 Director de Desarrollo de Negocio y Portfolio
 Landis+Gyr España y Portugal
 javier.rodriguez@landisgyr.com
 www.landisgyr.es

