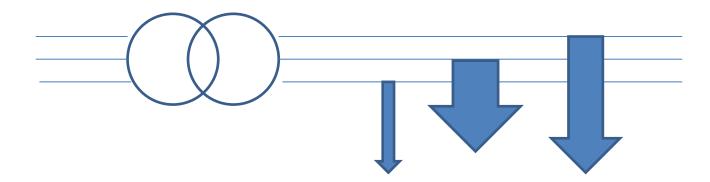


NUEVOS ALGORITMOS INTELIGENTES PARA REDES DE DISTRIBUCIÓN DESEQUILIBRADAS

Ana Morales
Directora General
DIgSILENT Ibérica

NUEVOS ALGORITMOS

- DIgSILENT trabaja en el desarrollo de nuevos algoritmos para equilibrar la tensión de las redes de distribución
- Objetivo: minimizar el desequilibrio de potencia y evitar así los problemas que se producen en las redes de distribución
- Factores de desequilibrio (IEEE 1159, NEMA, UNE50160...):


Desequilibrio secuencia inversa

Secuencia homopolar

$$\frac{V_2}{V_1} = \sqrt{\frac{1 - \sqrt{3 - 6\beta}}{1 + \sqrt{3 - 6\beta}}}$$

$$\frac{V_2}{V_1} = \sqrt{\frac{1 - \sqrt{3 - 6\beta}}{1 + \sqrt{3 - 6\beta}}} \qquad \beta = \frac{V_{ab}^4 + V_{bc}^4 + V_{ca}^4}{V_{ab}^2 + V_{bc}^2 + V_{ca}^2}$$

$$\frac{V_0}{V_1}$$

POTENCIA COMPLEJA

• Factor de desequilibrio de potencia compleja:

$$s_b := (1/\bar{S}) \max_{i=1,\dots,N} \{ |S_i - \hat{S}| \}.$$

- N es el nº de fases
- \hat{S} es la potencia compleja media en un extremo de una línea o de un transformador:

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} S_i$$

– \bar{S} es la media de los valores absolutos de la potencia en las diferentes fases:

$$\bar{S} = \frac{1}{N} \sum_{i=1}^{N} |S_i|$$

DOS FUNCIONES OBJETIVO

MINIMIZAR DESEQUILIBRIO MEDIO DE POTENCIA

Esta función tiene en cuenta el desequilibrio de potencia en todos los elementos serie considerados, por ejemplo, líneas y transformadores, que forman parte de la red que se desea analizar. Si consideramos que M son los elementos sobre los que se calcula el factor de desequilibrio de potencia, se puede definir la función como:

$$\bar{s} = \frac{1}{M} \sum_{b=1}^{M} s_b$$

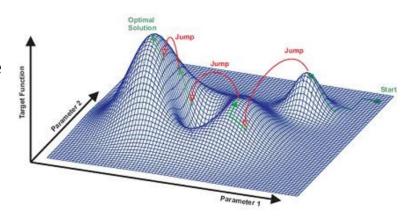
MINIMIZAR DESEQUILIBRIO DE POTENCIA EN CABECERA DE LINEA

Esta función permuta la conexión de los elementos conectados a las líneas de alimentación o acometidas para obtener un desequilibrio mínimo de potencia en cabecera de la línea de alimentación, sin tener en cuenta el desequilibrio del resto de elementos.

DOS ALGORITMOS DIFERENTES

ALGORITMO GRANDES CARGAS Y GENERADORES PRIMERO

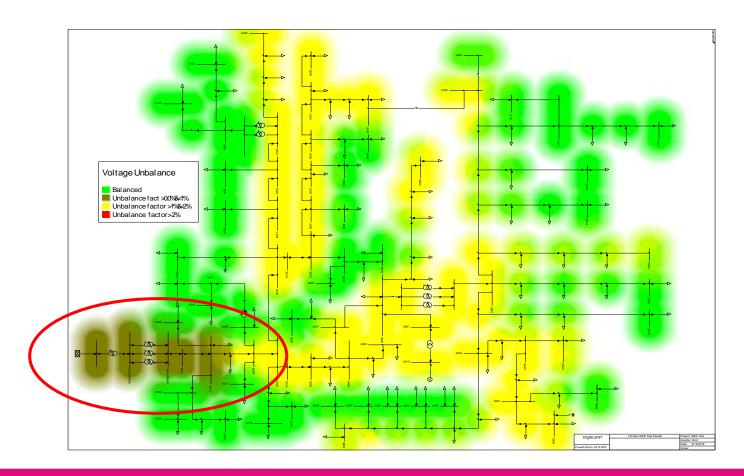
Iteración de todas las cargas y generadores por orden de potencia aparente, empezando por la carga o generador más grande. Para cada carga o generador, permuta las fases de la carga, del generador o del elemento de la red al que están conectados. Después de calcular la función objetivo para todas las conexiones posibles, elegirá la mejor conexión para el generador o la carga.


ALGORITMO DE RECOCIDO SIMULADO (Simulated Annealing)

Método de optimización estocástico basado en técnicas de Monte Carlo, que reconfigura los elementos de la red de forma aleatoria y durante el "enfriamiento del sistema", espera obtener soluciones adecuadas. En cada iteración n del algoritmo, se genera una nueva propuesta de reconexión y se aplica a la red, para calcular la función objetivo.

Búsqueda del Mínimo Global : Recocido Simulado

Fuente: Ramón Garduño Juárez/Modelado Molecular



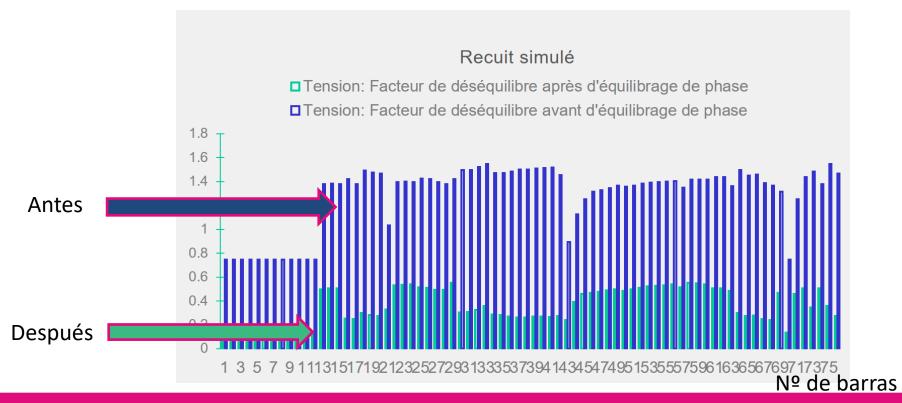
Fuente: http://www.frankfurt-consulting.de/img/SimAnn.jpg

APLICACIÓN

• Red IEEE de 123 nodos

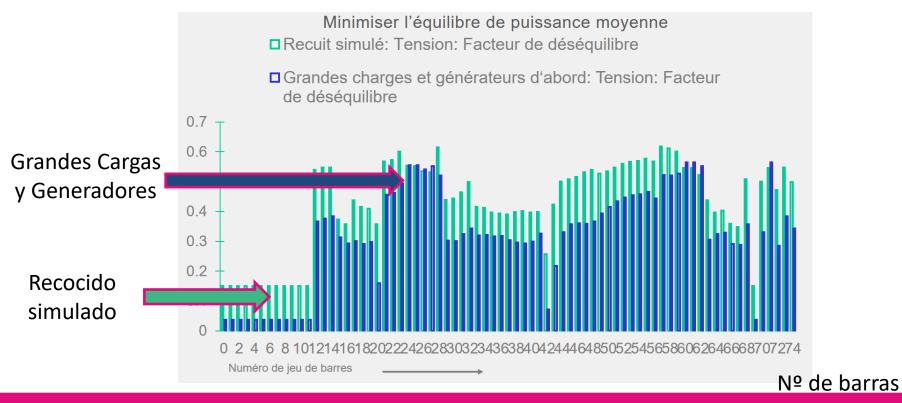
RESULTADOS

- Función objetivo: minimizar el desequilibrio de potencia media
- Algoritmo grandes cargas y generadores primero
- Resultados: factor de desequilibrio antes y después de la optimización

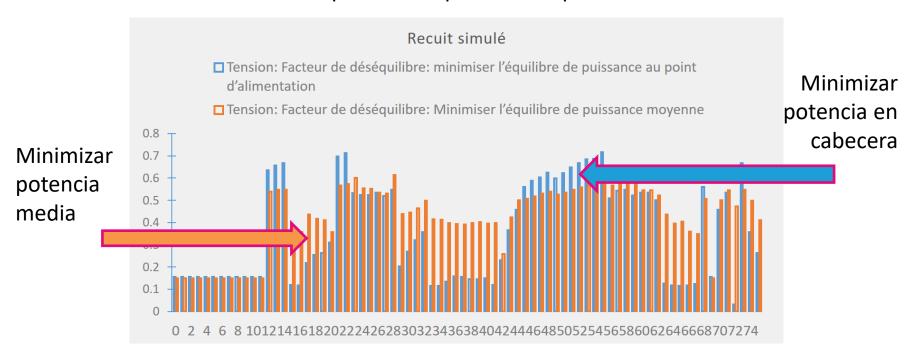


Nº de barras

RESULTADOS


- Función objetivo: minimizar el desequilibrio de potencia media
- Algoritmo recocido simulado
- Resultados: factor de desequilibrio antes y después de la optimización

COMPARACIÓN ALGORITMOS


- Función objetivo: minimizar el desequilibrio de potencia media
- Comparación de dos algoritmos
- Resultados: factor de desequilibrio después de la optimización

COMPARACIÓN FUNCIONES OBJETIVO

- Dos funciones objetivo: minimizar el desequilibrio de potencia media y el desequilibrio de potencia en cabecera de línea
- Algoritmo de recocido simulado
- Resultados: factor de desequilibrio después de la optimización

Nº de barras

CONCLUSIONES

- Reducción de restricciones térmicas (niveles de carga %)
- Reducción de pérdidas en el sistema (en líneas y transformadores)
- Reparto equilibrado de potencia, mejora de tensiones y vida útil de equipos

Método		Minimizar Desequilibrio medio de potencia			Minimizar Desequilibrio de potencia en cabecera		
		Antes	Después	Diferencia	Antes	Después	Diferencia
Grandes cargas Y generadores primero	Pérdidas [kW]	93,314	75,423	<mark>17,891</mark>	93,314	76,447	<mark>16,867</mark>
	Carga [%]	118,187	88,993	<mark>29,194</mark>	118,187	92,211	<mark>25,976</mark>
Recocido Simulado	Pérdidas [kW]	93,314	89,728	<mark>3,586</mark>	93,314	95,271	<mark>-1,957</mark>
	Carga [%]	118,187	98,057	<mark>20,13</mark>	118,187	98,655	19,532

DATOS DE CONTACTO:

DIgSILENT Ibérica

José Abascal, 44, Planta 1

28003 - Madrid

Teléfono: +34-914416040

Dirección e-mail: info@digsilentiberica.es