
"GESTIÓN DE LA INTEGRACIÓN DE ENERGÍA EÓLICA EN REDES ELÉCTRICAS CON ALMACENAMIENTO EN BATERÍAS DE LI-ION"

Javier Sánchez
Sales Manager, Civil Electronics and GRID
Iberia & LATAM
Saft Baterías

ISLAS FEROE: PROYECTO PARQUE EÓLICO

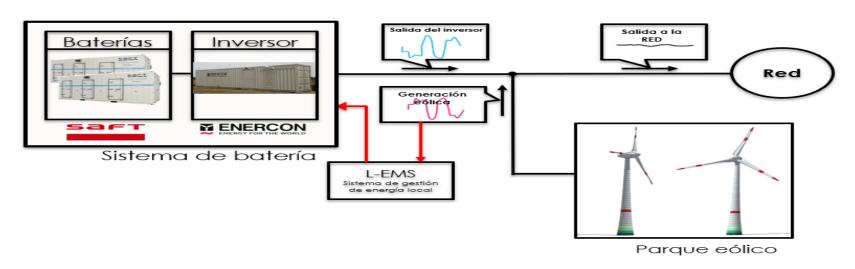
- 1. SEV: Compañía eléctrica local integrada verticalmente
- Objetivo 2020: 75 % de energía renovable con energía hidroeléctrica y eólica
 - 60 % conseguido en 2015
- 2. Nuevo parque eólico de 12 MW con ESS en 2015 (sistemas de almacenamiento de energía)
- Capacidad eólica total: 18 MW
- 30 % de la capacidad total de generación
- 18 % del consumo anual de energía
 - 42 % de energía hidroeléctrica, 40 % de generación térmica
- 3. Visión a largo plazo
- Incremento del doble de consumo de energía en 2030
- Objetivo: 100 % de energía renovable

DEFINICIÓN DE LA NECESIDAD

Problemas conocidos y desconocidos

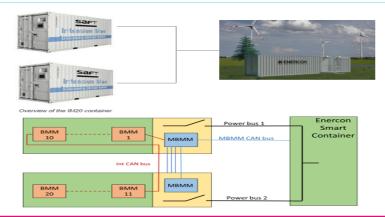
- Volatilidad de la generación eólica
 - Impacto en la tensión y la frecuencia
 - Generación Diésel para compensar la fluctuación a corto plazo
- Falta de inercia
 - ¿Inercia sintética?
- Sustitución de la generación síncrona por generación a base de inversor
 - ¿Límites de estabilidad?

Prioridad para control de potencia


máximo

1MW / minuto

subida/bajada

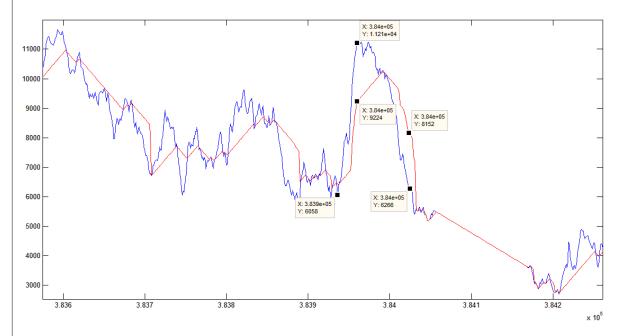

RESUMEN ESQUEMÁTICO DEL SISTEMA DE BATERÍA

BESS = 2 contenedores IM20P 2,4 MW

1 PCS ENERCON 2,1MVA + LEMS

2 Intensium Max 20 P		
Energía	707 kWh	
Capacidad de descarga continua	2 400 kW	
Capacidad de carga continua	1 500 kW	
Tensión nominal	623 V	
Intervalo de tensión	525V - 700V	

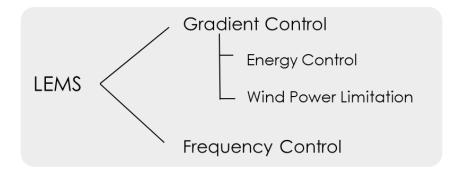
Contenedor inteligente Enecorn	
Potencia aparente	2300 kVA
Tensión CA	Baja: 400 VMedia: 20 kV
Potencia CC	2 400 kW
Intervalo de tensión CC	345 – 705 V
Corriente CC	1000 A


DIMENSIONAMIENTO POR MODELIZACIÓN EXHAUSTIVA

Datos eólicos SEV en alta resolución (2 s)

EMS (sistema de gestión de energía) con gestión SoC (gestión de estado de carga)

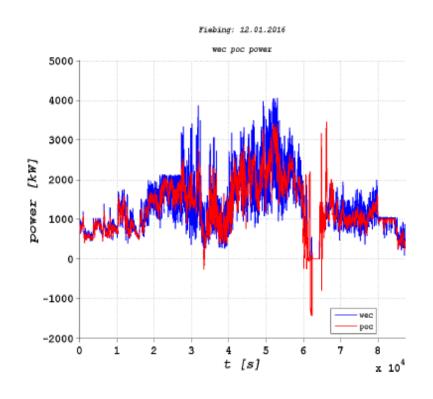
Optimización iterativa


- Conformidad
- Potencia
- Energía
- SoC (estado de carga)
- Vida útil
- Disponibilidad

SISTEMA DE GESTIÓN DE ENERGÍA LOCAL (LEMS)

Determina el flujo de energía en el punto de conexión de la planta

- Datos sobre potencia disponible en la batería
- Estado de carga (SOC)
- Monitorización de la generación eólica


- Control de la energía eólica
- → Limitación de Potencia eólica potencia

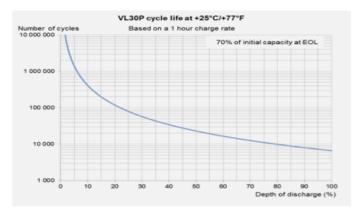
Producción gradiente energía contraria a energía

En períodos de altas fluctuaciones o por falta de en la batería

RESULTADOS DE LA SIMULACIÓN

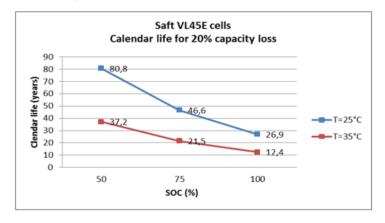
- Cumplimiento de control de potencia
 1 MW/min: > 99 %
- Eficiencia roundtrip DC: 97,6 %
- Eficiencia rountrip CA incluidos PCS (sistemas de acondicionamiento de potencia) y equipo auxiliar: 86,2%
- Pérdidas de eficiencia total de la energía eólica generada: 0,22 %
- Intercambio promedio de energía con el BESS (throughput): 261 %
- Pérdida de capacidad tras de 20 años de funcionamiento: 20,9 %
- Aumento de la resistencia interna tras de 20 años: 83 %

TECNOLOGÍA SAFT VL- VIDA ÚTIL

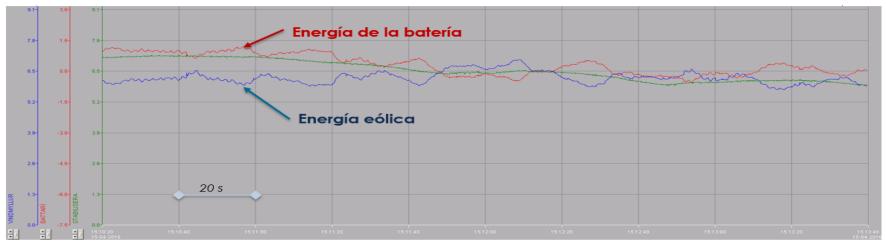

Main features

- High charge acceptance
- Enhanced cycle life
- High energy throughput

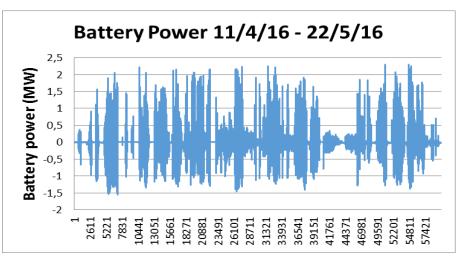
- Lower impedance
- Best calendar life on market


Cycle life (70% remaining capacity)

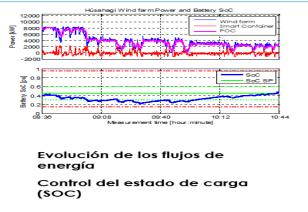
- 9,000 cycles @ 80%DOD , 1C
- 200,000 cycles @ 15%DOD, 1C



Calendar life

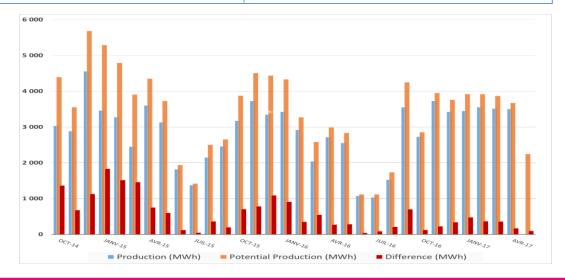

- Loss below 0.5% / year
- Temp < 35°C and 50% SOC

RESULTADOS: FUNCIONAMIENTO DE LA BATERÍA



- Aproximadamente 80 MWh cargados a lo largo de 40 días
- Representa <u>un rendimiento diario del 300 %</u>
 (2 MWh al día / 700 kWh de batería)
- El sistema requiere de la mayor entrega de potencia desde baterías de forma continuada

RESULTADOS: SISTEMA ELÉCTRICO



Reducción significativa desde el 2014

Invierno 2014/15 28 %
Invierno 2015/16 19 %
Invierno 2016/17 9 %

LECCIONES APRENDIDAS

La operación de la red de SEV con el 85 % de la carga cubierta por energía eólica es posible y estable

Se consiguieron resultados positivos mediante:

- 1. Estrecha colaboración de todas las partes.
- 2. Una asociación inteligente de ideas, soluciones y un proceso de diseño iterativo con su validación paso a paso antes de la aplicación sobre el terreno.
- 3. La identificación y definición del caso de uso en una etapa temprana.
- 4. El control de gradiente eólico más critico necesita de sistemas de almacenamiento de alta potencia(MW), pero no tanta energía(MWh).

DATOS DE CONTACTO:

Javier Sánchez

Sales Manager, Civil Electronics and GRID Iberia & LATAM

javier.sanchez@saftbatteires.com

